
Getting Started with plasTeX

Tim Arnold

February 19, 2008

1 Overview
This document is part one of a “Getting Started with plasTeX” series to explain how to
extend plasTeX so it can understand, parse, and render your customized LaTeX source.

If you have standard ’plain-vanilla’ LaTeX files, plasTeX will work for you already
(see the main user documentation to use the plastex command). And if you have
simple customizations, plasTeX can read your package files and work as-is. But when
you have more complex styles or classes, you’ll need to extend plasTeX to work with
your customized files. It’s quite easily done: there are two tasks to get started:

1. add a Python class corresponding to each macro you have defined. You’ll inherit
from a standard plasTeX class; often there’s little more to it than that. You define
the classes so plasTeX can understand how to parse your new commands.

2. add a template to render the content resulting from plasTex parsing. Your com-
mand will have some data or text that needs to be handled in some way in order
to display itself correctly, depending on what format you want to render to. The
template tells the renderer how to do that.

Once you have those tasks completed, you set your environment PATHs and run
plastex. That’s all there is to it. We’ll do a silly start-up example just to run through the
steps. Afterwards we’ll do some more interesting things. Note that this example is so
simple, plasTeX could easily understand the customization with no action on your part–
it can often recognize new commands and deal with their definitions by itself. However,
sometimes you’ll have new commands or environments that more easily handled by
writing your own classes. Let’s get started and go through this step-by-step so you can
see how plasTeX works.

2 Getting Started: Setting Up
To get started, we’ll set up a workspace so we can scale it up with increasingly complex
needs and new commands. First, create directories hold the new Python classes and the
html templates corresponding to those classes. Also create a corresponding directory
to hold containers for the LaTeX packages. That’s three new directories:

1



src/ contains python classes corresponding to new packages
Action: create a file called mypackage.py

render/ contains html template files corresponding to new packages
Action: create a file called mypackage.zpts

tex/ contains style files corresponding to new packages
Action: create a file called mypackage.sty

Finally set three environment variables to tell plasTeX where to look for instruc-
tions:

• set PYTHONPATH to include the src directory

• set TEXINPUTS to include the tex (and current ’.’) directory

• set XHTMLTEMPLATES to the render directory

How you do that depends on what operating system you use. On my machine, the
commands look like this:

setenv PYTHONPATH ~/example/src
setenv TEXINPUTS ~/example/tex:.::
setenv XHTMLTEMPLATES ~/example/render

2.1 Example for Testing: the LaTeX source
To get started, we’ll create a new command myBold that will render its text as bold.
Create a file in the current directory called testing.tex with the following lines:

\documentclass{article}
\usepackage{mypackage}
\begin{document}
Hello \myBold{World}

\end{document}

2.2 mypackage.sty
In the tex directory, write the mypackage.sty file to contain these lines:

\ProvidesPackage{mypackage}
\newcommand{\myBold}[1]{\textbf{#1}}

Note: Recall that at the beginning I said that if you have very simple customiza-
tions, plasTeX can read your package files and work as-is. Our example certainly falls
into that category. We’re only using this as an example to focus on the steps involved
in extending plasTeX.

Note: This LaTeX code is not necessary as far as plasTeX is concerned; I include it
here since you probably want to use LaTeX to create a pdf or postscript file from your

2



sources, and LaTeX has to have the definition. But as long as plasTeX can find your
definitions (i.e., classes) corresponding to the commands in your source, this file could
just as well be blank. In fact, sometimes it’s quite useful to spoof plasTeX in that way,
but that’s a trick for another article.

3 Getting Started: Coding
There are two parts to code: the Python class called myBold and the HTML template
called myBold. These names match the new command we’re defining. Since this com-
mand takes a single argument, we’ll inherit from the plasTeX Base.Command class.
The only thing the python class needs to do is to parse the command and its arguments
so we can get to the data it contains when we need to render it.

3.1 Create the myBold class
In mypackage.py:

from plasTeX import Base
class myBold(Base.Command):

args = ’text:str’
def invoke(self, tex):

Base.Command.invoke(self, tex)

Once plasTeX sees the myBold command in your source, it will parse it and the
node will contain a string attribute called ’text’. See the main user documentation for
details. For now that’s really all we need to know–we only need the text argument
given to the myBold command.

3.2 Create the myBold Renderer
The renderer takes the data from the node and renders it according to the template.
Here we set the argument in a b tag. I like to set the class on my tags to the name of
the command they came from.

name:myBold
<b class=’myBold’ tal:content=’self/attributes/text’></b>

Each node you want to render has the same structure: the name: specifies the name
of the command you’re rendering, followed immediately by a template defining how to
render the command and its data.

3.3 Parse and Render with plastex
That’s it for setting up and coding. Now plasTeX knows enough to parse the tex file,
create a document object and render the nodes of that object.

plastex testing.tex

3



4 Results
In your work directory, you’ll see these entries:

testing/ testing.paux testing.tex

The subdirectory testing contains a number of things, but for now focus on the
main file, index.html. That file contains the results of rendering our simple LaTeX
source. It was rendered using the default theme; inside it you’ll see the result of the
myBold command:

Hello <b class="myBold">World</b>

We’ll talk about the other items in that directory as well as the testing.paux file
later on.

5 Getting Deeper
To add more functionality in terms of new commands and environments, you add more
classes to your package.py file, plus the corresponding render templates in the pack-
age.zpts file.

There are a lot of questions remaining; how do you use a different theme, what
kinds of things can you do in the template, what is the zpts extension mean, how do
you get DocBook XML from your LaTeX sources, etc. Future articles will deal with
those questions and more.

Comments are welcome: a jtim at bellsouth dot net

4


	Overview
	Getting Started: Setting Up
	Example for Testing: the LaTeX source
	mypackage.sty

	Getting Started: Coding
	Create the myBold class
	Create the myBold Renderer
	Parse and Render with plastex

	Results
	Getting Deeper

